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Two-dimensional transient flow in square cavity. following impulstve acceleration of the 
sliding waft, is simulated by random-vortex calculations of the lype initiated by .4. Chorin. 
Comparison calculations are made using a transient finite-difference method that is first-order 
accurate in time and second-order accurate in space. The Reynolds number. R, based on the 
shding wall length and speed; is 2000, 5000. or 10.000. The simulated history starts when the 
moving wall starts, ends when the wall has moved three times its length. and shows the 
development of primary and secondary eddies in the corner where the boundary layer on the 
moving wall is peeled off by the stationary wall. Special features of this random-vortex 
simulation include: (1) the use of the closed-form expression for the velocity induced by a line 
vortex in a rectangular enclosure; (2) special treatment of regions very close to the corners 
where the sheet-like elements, ordinarily used in a very thin wall !ayer, are inapproprtate: 
and (3) the generation of a small (three-member) ensemble of simulations at each Reyno!ds 
number. Comparisons between the two numerical schemes were made at Reynolds numbers of 
2000 and 5000. A comparison with experimental data of Koseff is given for R = 2000. Roth 
numerical methods exhibited the same qualitative flow features and were in fair quantitaive 
agreement. The random-vortex calculations show somewhat better agreement with the 
laboratory experiment. ‘f 1988 Academic Press. Inc 

1. INTRODUCTION 

Steady flow in a rectangular cavity, driven by the sliding motion of one of the 
walls, has become a paradigm of viscous How; it has been extensively explored in 
the laboratory [ 11, and has been a standard target for numerical 
simulation [Z-17]. The simple configuration of the boundary allows one to concen- 
trate the resources of a particular numerical technique on the resolution of 
interesting detailed flow features, which appear in increasing number as the 
Reynolds number increases. 

Relatively little attention has been paid to the transient fiow. which would follow 
impulsive acceleration of the sliding wall, even though this idealized case seems to 
offer considerable intrinsic interest and some good challenges for numerical 
analysis. Unlike the steady flow, the starting flow will be irrotational within a large 
fraction of the rectangle, and the random-vortex simulation seems attractive 
because it may reveal a very interesting picture before the number of computationai 
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elements becomes unmanageably large. This picture certainly will include features 
which are hard to capture in a computation that employs a fixed Eulerian grid of 
any refinement, although it is possible that at very early times a local similarity 
solution, with a streamfunction of form $ = VI--(& 19), could be used to expand the 
scale of distance very near the troublesome corner. In this, Y and 0 are polar coor- 
dinates centered at the corner, U is the moving wall velocity and 5 = v(4~t)-‘,‘~ is 
the similarity variable. However, the analysis of the similarity solution could be a 
difficult task in itself, particularly in view of the velocity discontinuity imposed in 
the idealized problem at the end of the sliding wall. 

Sharp corners present a special challenge to the random-vortex scheme as well, 
because the sheet-like elements, which are used to represent the vorticity dis- 
tribution in a very thin region close to walls, are designed to mimic the behavior of 
vorticity in a boundary layer. This requires that an unambiguous outward normal 
vector exists at every point of the wall, and that the radius of curvature of the wall 
be very large compared to the distance from the wall to a sheet. External corners, as 
at the end of a splitter plate [18], and internal corners, as in the present problem, 
both cause difficulties which have not as yet been thoroughly resolved. 

Nevertheless, random-vortex simulations are becoming popular, and in cases that 
do not crucially involve sharp corners, they have demonstrated both accuracy in 
the description of relatively bland steady flows [19], and impressively faithful 
descriptions of a wealth of small-scale detail in transiently separating flows 
[2&21]. Thus, the method seemed an obvious candidate for this problem. 

One of the finite-difference algorithms which has been notably succesful in 
application to the steady flow limit of the present problem is the REBUFFS code 
[22-261. Since we have accumulated experience with the use of this code on trans- 
ient flows, it seemed interesting to run a comparison between its capabilities and 
those of the random-vortex method. 

Finally, recent laboratory experiments by Koseff [l] provide information about 
the starting flow, at a Reynolds number of 2000, suitable as a standard of com- 
parison for the two calculation schemes. In particular, the starting flow has been 
observed to be highly two-dimensional, even at values of Re which correspond to 
eventually turbulent flow. Presumably, the starting flow becomes unstable at some 
time, but the perturbations take a considerable time to grow, leaving an interesting 
period of flow development which should be well described by a theory of two- 
dimensional flow. 

2. THE RANDOM-VORTEX METHOD 

The set of algorithms that has acquired the name random-vortex method was 
originally proposed by A. J. Chorin [27-291, and most subsequent analyses and 
applications of the method have been carried out by him, his colleagues, and 
students. However, there are important variants of the method, and potentially 
significant differences in detail, so that each author needs to explain the exact 
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procedure used to obtain a given result. What follows in this section is a very brief 
outline of the general method, and then a precise statement of the details built into 
the final random-vortex computer code used in this study. 

2.1. Synthesis of the Velocity Field 

The general method starts with the theorem for synthesis of a vector field, u(r, i), 
given the fields of A and Q, where A I div II, and 52 s curl u. This states that 

u=uL,+ud+Mp, (I-1) 

where u,, the velocity due to norticity, may be computed by the Biot-Savart law, as 
though there were no solid boundaries; ud, the velocity due to divergence, is zero for 
strictly incompressible flow, as is assumed here; and uBp is the oelocity due to a 
solenoidal potential flop,, to be added so that the combined flow does not pass 
through solid walls and has, if appropriate, desired properties at infinity. Use of the 
Biot-Savart law ordinarily requires that the vorticity has compact support, or that 
it is distributed periodically in space. 

2.2. Computational Evaluation of the Biot-Savart ktegrai 

At any time after the start of the motion, the spatial distribution of vorticity is 
imitated by a set of spatially overlapping circular or linear elements, called blobs 
and sheets. Each element is characterized by a value of the circulation, which is 
assigned when the element is created, and held constant thereafter. Each element is 
further characterized by the velocity field which it induces at any point away from 
its center and is designed so that this velocity is always finite. 

There is considerable flexibility available to the designer of such elements, and 
considerable evidence [30-311 that the design of the blobs can affect the accuracy 
with which the integral is approximated by the sum of contributions from a fixed 
number of blobs. We employed the original flat-topped blobs introduced by 
Chorin [27], and the sheets he introduced in [29]. These are the same elements 
used in [ 18-201. Very recently, Tiemroth [21] has redone and extended the 
calculations of Cheer [20], using blobs of uniform vorticity and overlapping sheets 
with a tent-like distribution of strength along the sheet length. These modifications 
appear to make the method more robust, but were developed after the present 
calculations were completed. Figure 1 reminds us of the properties of the flat- 
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la) Blob (b) Shae? 

FIG. 1. Velocity fields associated with computationai vorricity elements; (I:: is the velocity jump 
across the sheet. 
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topped blobs and the sheets. Note that each sheet is accompanied by an image, 
equally distant behind the wall, so that sheet plus image produce a uniform plug 
flow between them, and zero velocity elsewhere. 

Ordinarily, the blob representation is used whenever the center of the element is 
farther than half a blob radius from the wall; the sheet representation is used 
elsewhere. In the present problem, the sheet representation is conceptually 
inappropriate very near the corners, and one of the corner regions is the seat of 
most of the interesting flow developments. This called for special treatment of the 
corner regions, specified below in Section 3.8. 

The placement of the elements at a given time is determined by the equations of 
motion and the no-slip boundary condition, as will be described in Section 2.4. 

2.3. Generation of the Solenoidal Potential Flow 

The velocity induced by each vortex blob coincides, at points outside the blob, 
with the velocity induced by a line vortex of the same circulation. In [32], Choi 
and Humphrey present a closed-form solution, in terms of elliptic functions, that 
synthesizes II,. + up for a single line vortex within a stationary rectangular enclosure; 
they also present a computationally economical algorithm for evaluation of the 
elliptic functions. For the present calculation, the closed-form expression for each 
element was modified by subtracting the u, of a line vortex, and replacing it by the 
II, of a blob. 

The closed-form expression was obtained by summing the effects of an infinite 
array of image vortices, some of which are very close to the interior vortex if the 
latter lies very close to one or more walls. When interior line vortices are replaced 
by blobs, the images are also conceived to be blobs; thus a blob that is very close to 
a wall may overlap with one or two of its own closest image blobs, or with image 
blobs associated with neighboring interior elements. In this case, a further 
modification of the closed-form expression was made, to replace the overlapping 
images with blobs. The details are presented in Section 3.1. 

Alternative procedures are also available to generate an approximation to u,. 
The simplest in concept would be an arithmetic summation of the contributions of 
a finite set of images, but it is shown in [32] that this is, for an adequate level of 
accuracy, computationally more expensive that the procedure followed here. A less 
expensive alternative employs fixed external arrays of singularities, such as line vor- 
tices, sources, sinks, or doublets, with strengths tuned at each time step so as to 
annul the flow through the wall at an equal number of collocation points. An 
excellent discussion and illustration of alternative techniques is given in [21]. 

2.4. Time-splitting 

Another feature common to all versions of the random-vortex method is sequen- 
tial simulation, during each increment of time, of the three physically simultaneous 
processes which affect the spatial distribution of vorticity. These processes are: 
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(1) co.mecCon, which is simulated by displacing vortex blobs or sheets with 
the local fluid velocity, keeping the circulation of each element constant: 

(2) generation, which in the case of barotropic flow occurs only at the wall, in 
order to enforce the no-slip condition, and which is simulated by the introduction 
of new vortex elements at the wall; and 

(3) diffusion, which is simulated by giving each element of vorticity an 
appropriate random displacement, drawn from a Gaussian distribution with zero 
mean and with variance proportional to v At, where r is the fluid kinematic 
viscosity and At is the time increment in the numerical caiculation. For a blob, 
independent displacements in x and 4’ are drawn; a sheet is displaced only in the 
direction normal to the nearest wall. 

There may be variety in the detailed implementation of each of these steps, but 
most workers use at least a second-order integrator for the convective displacement 
of vortex elements. We used Heun’s improved Euler method [33] for blobs, but 
only a first-order Euler method for sheets. It has also been shown C34] that it is 
appropriate, with a second-order convective integrator, to split the diffusive dis- 
placement into two half steps, each drawn from a population of variance v At, but 
we followed [lg, 20, 351 in using a single step from a population with variance 
21, At. 

It is probably worth mentioning that we, and all the authors we imitated, obser- 
ved a spontaneous misbehavior of the method, characterized by an oscillatory 
production of vortex elements of alternating sign, at locations where vorticity of 
only one sign is physically needed. Each author has struggled with this in a different 
way: as Mlows: 

(1) Ellzey [lg] let the parasitic elements, which seemed to have a physically 
unrealistic sign, be generated, but then weeded them out of the sheet layer by 
discarding pairs of elements of equal and opposite strength, when they me: a 
proximity test. 

(2j Choniem and Gagnon [I91 reduced the percentage of parasitic eiemenrs 
by using more sheets, of smaller strength, to correct for a given slip velocity. They 
showed that this leads to a less than proportional increase of the total number of 
computational elements, because many of the elements in a crude simulation are 
parasites. 

(3) Tiemroth [21], whose work followed ours, utilized tent-shaped sheets, 
designed to smooth the tangential variations of the sheet-induced flow, and used 
two half-steps for diffusion, together with a modified-Euler integrator for convec- 
tion. This seemed to cure the problem, even when fairly strong sheets were formed. 

Our own approach was simply to ignore a call for sheets of the wrong sign, along 
parts of the wall where the correct sign seemed obvious. The details are specified in 
Section 3.4. Given the results of Tiemroth, we would not use our technique again. 
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but it seems, like the equally arbitrary technique used by Ellzey, to have been 
harmless. 

2.5. Local Annihilation of Slip Velocity 

An intrinsic feature of the random-vortex method is a discretization of solid 
boundaries for the purpose of application of the no-slip condition. In the usual 
practice of the method, the slip velocity is annihilated by the introduction of new 
vortex elements, only at a discrete set of boundary points. These points may be dis- 
tributed along the boundary in any desired way, but the correction that annihilates 
the slip at one of the collocation points is applied in a prescribed manner, usually 
uniformly, to an entire arc of the boundary, and hence must be locally 
inappropriate at many points along that arc. The discretization of the boundary for 
this purpose is typically quite crude, and yet the method seems to resolve, quite suc- 
cessfully, comparatively small-scale variations along the wall. It is also typical of 
most applications of the method, that slip velocities below a certain threshold will 
be ignored. This prevents the generation of a host of very feeble vortex elements, 
which would add far more to the cost of the calculation than to the accuracy of its 
results. 

2.6. Stochastic Nature of’ the Results 

The results of a random-vortex calculation are intrinsically stochastic, so that 
analyses of accuracy and convergence of the method [3640] produce estimates of 
the variance to be expected in a collection of statistically independent calculations. 
The cited analyses provide useful guidelines for some choices of computational 
parameters, but the flows to which they apply are all in some essential way simpler 
than the flow studied here. In particular, no analysis has yet been made of the con- 
vergence of a scheme in which vorticity is directly represented by sheets near the 
wall, and by blobs elsewhere, and no analysis contemplates the presence of a wall 
with sharp corners. Such complications will presumably receive attention within the 
next few years, and that will be a great help to users of the method. 

The additional point to which attention is drawn here is that all analyses of con- 
vergence of the random vortex method implicitly assume stability of the flow being 
simulated. That is, they assume that the real flow will evolve nearly identically in 
each of a collection of realizations, distinguished from one another only by small, 
random, discrepancies in initial data. Thus, the variance which appears in a collec- 
tion of numerical simulations is supposed to be a computational artifice, which can 
be reduced to a negligible level by refinement of computational parameters. 
However, real flows at sufficiently high Reynolds number are not stable in this 
sense, and it seems at least possible that the random displacements of vortex blobs, 
which necessarily change whenever the number of blobs or the time step is changed, 
might correspond to weak physical disturbances, sufficient to cause a large change 
in the subsequent evolution of a real flow. If this is true, the mean behavior of a 
collection of numerical simulations may not correspond to any single physical 
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realization of the flow, but to something akin to the ensemble-averaged behavior of 
a turbulent flow. 

Analysis of the wall-driven cavity flow is complicated, in this respect, by the fact 
that nothing much is known about the stability of the flow. ft has been difficult to 
ascertain, in this study, whether some unexpected development in the random-vor- 
tex simulation is a numerical aberration or a newly discovered physical instability. 
A very small ensemble, N = 3, of calculations was carried out for each value of the 
Reynolds number, in the hope that some striking increase of variance would appear 
as Re increased. Nothing much was learned from this: possibly because the variance 
due to numerical discretization remained too large. However, the computational 
cost of refined random-vortex computations is fairly rapidly decreasing, and the 
idea of such a test for physical instability of complex flows may be worth another 
trial in the future. 

3. DETAILS OF THIS RANDOM-VORTEX CALCULATION 

3.1. Convecrion Calculations 

The formula for the velocity induced by a line vortex within a stationary rec- 
tangle has appeared before in this journal [32]. It has been applied to the present 
task as follows: 

(.I) Velocity induced on a blob. Equations ( 1) and (2) below give the velocity 
components of a blob. For generality, the walls of the enclosure are the planes x = 0 
and x=a, I’=0 andlt=b. For our case, a=b= 1. 

+ 1 [p-,,(-ui - Xj, ~‘i - ?;) + P!(-Y, - 2a + CX~, ~‘i - 2b + J>) 
JFi 

- pI,(xi - xi, yi - 2b + J!,) - pJ (x, - 2a f .x~~? y:i - J;)] 

+c 
L 

fj(J!i - J’j) 
+/ 27r/xi-xj~~-27c~x,-xj~ I’0 
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KT, 
cn(~,k)dn(~,k) 

‘j= -~~l+cs’(~,k)+c~‘(~,k.)]sn)(~,k) 

+ C [ -px(Xi-Xj, J’;- 1)) - Px(Xi- 2U + -Xj, ,l+i- 2b + J’j) 
ifi 

+ px(xi-xj, y-26+ $+p,-(xi-2a+xj, yi-~j)l 

+ L -2n(xi-x.l:+2n(xi-x./ r 
j#i i 

Tj(Xi - Xj) Tj(Xi - Xi) 

J J 0 I 

+ c2 

fj(Xj - xj) fj(Xi - x;, 

- 2*\xi-x;lz+2rrlx,-x;l f-0 I ’ 0) 

where 

dcp/( 1 - k’* sin’ v, j ‘IL! (3) 

(4) 

The first term in (1) or (2). due to Greenhill [41], gives the effect of the blob’s 
own image system, each image being treated as a line vortex. 

The second group of terms adds the contributions of other blobs and their image 
systems, as though blobs and images were all line vortices. 

The third group replaces the contribution of a line vortex by that of a blob, for 
each neighboring blob that lies within a distance r. (a blob radius) of the element of 
interest. 

The fourth and last group replaces the contribution of a line vortex by that of a 
blob, for an image of any blob, if the image lies within a distance r. (a blob radius) 
of the element of interest. Note that this requires, for the first time, a calculation of 
the position of an image. 

The functions p.Y and p, are defined by Eq. (4) and (5). In all of this: cs denotes 
the ratio cn/sn; Ti is the circulation of the blob whose velocity is being com- 
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puted-it multiplies Greenhill’s expression for the effect of all the images of that 
blob; x:, is taken over all values ofj # i, such that thejth real blob overlaps the cen- 
ter of the ith blob; Cr is taken over all values ofj, such that an image of thejth real 
blob overlaps the center of the ith blob; k is the modulus of the elliptic integrals; 
1~’ = (1 - k2j1,?; K and k are the complete elliptic integrals corresponding to the 
modilli k and k’. The value of k is determined by the aspect ratio of the rectangular 
enclosure, by the relation a/b = K/K’. For a square. k = k’= arc sin(nj4) and 
K= K’ = 1.8541. An iterative algorithm which exploits the descending Eanden 
transformation [42] was used to evaluate the elliptic functions, 

This direct mode of converting line vortices to blobs, when that would make a 
difference in the velocity of the element of interest, involves the subtraction oi two 
large numbers to get a small difference. In principle, the difference can be obtained 
directly by a Taylor series expansion of the expressions involving elliptic integrals, 
for small values of the separation between elements. The appropriate formulas are, 
for the present case of a square enclosure, 

x ((10-8&j sin’ 6 - 2 sin’ Q + (9 + 4 J5)) (6) 

and 

p,.(x, y) z - ri(yj2m-‘) + K’r,(y,‘24xa’) 

x~(lo-8~~)cosJt)-2cos’et(9~4~~~)~. (7) 

In these formulas, x = X, - xi, 4’ = yi - yj, r3 = x2 + J”, sin’ 19 = j”/r’, and 
cos2 0 = x’/r’. These expressions are accurate to about one part in lo8 if r < IO-‘. 
When Y < r,,? we have only to set r = r,, in the ieading terms. This analysis, 
suggested by the work of Sherman [43], was unfortunately done too late to help 
with the present calculations, for which a truncated summation of image effects, 
using 1200 nearest images, was used if r was < IO-” 

(2) Velocitls induced on a sheet. The velocity induced at the midpoint of a 
sheet includes the contributions of blobs, just described above, plus the con- 
tributions of any sheets that shadow the sheet of interest. Formulas for the latter 
contributions, accounting for partial shadowing, have been given by Chorin 1291 
and were used unchanged. 

3.2. Location of the Points of Zero Slip 

Each wall, of dimensionless length unity, was divided into equal segments of 
dimensionless length h; the no-slip condition was enforced at the midpoint of each 
segment. 

After some trial runs with h = 0.2 (too coarse), and /j =0.05 (too expenslvejj 
we compromised on h = 0.1. (All such choices of discretization parameters are 
summarized in Table I.) 
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TABLE I 

Parameters of the Random-Vortex Computations 

R 2000 5000 lO.ooo 

r0 

h 
t’rnin 
ilr 

I max 
Ensemble 

size 

0.1/n: 0.1/K 0.1/K 
0.1 0.1 0.1 
0.125 0.125 0.125 
0.2 0.2 0.1 
3 3 2 

3 3 3 

3.3. Thickness of’ Sheet Layer 

The thickness of the sheet layer is constrained by two considerations: 

(1) If it is less than half a blob radius, then a blob and its nearest image 
induce the same tangential velocity at the wall, as would a sheet and its image, 
providing that blob and sheet have equal circulation and that h = zrO. Here h is the 
sheet length and r. is the blob radius [29]. This would be true even if the layer 
were twice as thick, but the constraint given here also implies that the velocity 
induced on the interior element by its image is independent of element status. 

(2) It is a nuisance to have blobs randomly walking through the wall, and 
this can be avoided by letting the sheet-layer thickness exceed about 20, where r~ is 
the standard deviation of the distribution of random steps. 

Since the value of CJ depends on the size of the time step. these two constraints 
jointly imply a constraint on At. Specifically, if the sheet-layer thickness, 6, is set 
equal to IZCJ, the constraint is At < h*R/%rn*. (In this, and in all subsequent citations 
of numerical values, the unit of time is L/U and the Reynolds number is R = UL/v, 
where U and L are the sliding wall velocity and length, respectively; L/U, U and L 
are used for nondimensionalization.) We have chosen IZ = 2 and h = 0.1, and will 
present calculations for R = 2000, 5000, and 10.000. Thus any value of At ~0.2 
would meet these constraints. 

3.4. Circulation of Vortex Elements; Maximum Tolerable Slip Velocity 

As was mentioned in Section 2.5, no effort is made to annihilate the slip velocity 
exactly at a given collocation point. To cancel U,lip approximately, N sheets of the 
appropriate sign, each causing a velocity jump Uminr are generated. N is the integer 
part of )Q,\/u,~~, so the maximum residual slip velocity is umin. The circulation of 
the resulting vortex elements is thus L’= humi,. 

In the experience of most users of the random-vortex method, umin is the 
parameter to which the behavior of the simulation is most sensitive. We picked the 
largest value for which the oscillations associated with parasitic vortex elements 
were not serious. This was the value u,,~ = 0.125. 
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3.5. Time S:ep 

The value of the time step affects both the accuracy of the convection caiculation 
and the prominence of the stochastic aspects of the simulation. We used At = 0.1 for 
R = 10.000. In this choice, as in all others, we picked discretization levels that kept 
the calculation as inexpensive as possible while yielding results free of any obviously 
nonphysical features. We do not claim that these results are quantitatively indepen- 
dent of further refinement of the discretization. They were a.chieved with a number 
of vortex elements which started off at about 80, and rose to about 300 at time 
t = 3. This seems like a very small number of elements, but they were all crowded 
into about one-fifth of the total area of the square, and suffice to shcw events there 
with fair detail. 

3.6, Ensemble Calculations 

To obtain some idea of the variance of the results and to obtain averaged values 
for comparison with finite-difference calculations and experiment, each random- 
vortex calculation was run three times, with identical parameters but with different 
points of entry to the computer’s string of random numbers. 

3.7. Treatment af Random Displacements That Cross a Wd 

The random displacement of a sheet often carries it out of the cavity, and the 
same is occasionally true of blobs. These events were treated in the way prescribed 
by Chorin [29], where the rational is given. Specifically: 

( 1) A sheet that moves a distance JJ beyond the wall is replaced in the fluid, 
at a distance 1” from the wall. If I’> 6, the sheet is then converted to a blob. 

(3) A blob that moves a distance y beyond the wall is discarded if T> d; 
otherwise it is converted to a sheet and then replaced in the fluid. at a distance J’ 
from the wall. 

3.8. Sped Treatment of Corner Regions 

Each corner region was accorded special treatment, as is shown in Fig. 2. 

FIG 2. Showing the way that corner regions in the enclosure are modeled using vortex sheets. vortex 
blcbs, and a combination of the two. li is shown approximately to scale for dr=O.Z, R =2000. 



370 CHOI, HUMPHREY, AND SHERMAN 

Whenever a vortex element is found in the clear region of the sketch, it is treated as 
a blob; in the singly-hatched regions it is treated as a sheet; in the doubly-hatched 
region, its effect on a blob is that of another blob, while its effect on a sheet is that 
of another sheet. When a blob is close to a wall, and especially to a corner, a test is 
made of its proximity to each of the three nearest image blobs. Whenever one of the 
image blobs overlaps the real blob its contribution to the velocity of the real blob is 
modified, by subtracting off the effect of a line vortex and adding back the effect of 
a blob (just as though the image blob were a sufficiently nearby real blob). 

There may be more elegant ways to treat corners, but it is recognized that the 
corners where stationary walls abut the moving wall are not like ordinary interior 
corners, where two stationary walls meet and there is a stagnation point. One 
presumes that all numerical treatments of this problem must avoid any reference to 
the velocity precisely at the corners by the moving wall. 

3.9. Computational Costs and Their Distribution 

Computations employing the BiottSavart integral in a straightforward way are 
notorious for rapid growth of the number of operations, as the number of vorticity 
elements is increased. If no clever grouping strategy is used, the count grows as the 
square of the number of elements, and it does so in our case. 

The number of operations required for each element depends on the kind of 
element and on the technique used to compute u,. Each element is affected by every 
blob and by a relatively few (perhaps five) sheets. In turn, each blob affects every 
other element, but a sheet affects only those few sheets that are in its shadow. The 
proportion of blobs to sheets increases as the calculation progresses, as shown in 
Fig. 3. 

When an image method is used to compute u,, as was done in this work and the 
work of Cheer [20], Ghoniem et al. [35], and Ellzey [1X], the number of 
operations required to compute the effect of one blob and its image system on any 
other element depends on the complexity of the image system. In the present case, 

N 

5 

FIG. 3. Variation of the vortex elements with respect to time for R = 10.000. 
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the image system is very complex; the necessary computations require evaluation of 
the formulas (4) and (5). By the methods we used to evaluate the elliptic functions, 
the computation of the effect of one blob and its image system requires 
approximately 17 times the CPU time required to evaluate the corresponding 
formulas for a vortex blob in free space. 

The principal alternative to the image system for the evaluation of u, employs a 
fixed array of external singularities, as has been mentioned above, in Section 2.3. 
This is admittedly less accurate, but consumes an almost negligible fraction of the 
computational resources, thus allowing the use of a greater number of vortex 
elements within a fixed computing budget. The overall effect on accuracy of a field 
of uy which is generated by any fixed array of external singularities may be an unac- 
ceptably strong function of time, because singularities which are arranged to do a 
good job once the vorticity is fairly well spread through the interior may allow 
unacceptable leaks through the wall at early times, when the vorticity is packed 
tightly along the belt and in one corner. Further investigation of this issue may well 
be useful. It might be possible to design a compromise scheme, in which the effect of 
the three nearest images of a blob near a corner is explicitly calculated, and a fixed 
array of external singularities is tuned to minimize the residual leakage. 

4. THE REBUFFS CODE 

The REBUFFS code has been previously described by LeQuere, Humphrey, and 
Sherman [22]. It has been used extensively to predict laminar and turbulent flows 
in enclosures and cavities [22-261. Suffice it to say that the numerical algoritbm as 
employed here uses second-order central differencing for diffusion terms and tbird- 
order quadratic upstream interpolation for convection [44], thus yielding a 
procedure that is second-order accurate globally; the algorithm is implicit and firsr- 
order accurate in time; within a time step the continuity and momentum equations 
are solved iteratively, until a pre-established convergence criterion is attained; 
between iterations the SIMPLE method of [45] is employed to correct and update 
the velocity and pressure fields on a staggered interconnected grid; within an 
iteration the flow domain is swept line-by-line and the difference equations along a 
line solved using the Thomas algorithm. With respect to the quadratic upstream 
interpolation technique, the improved procedure developed by Freitas PI al. [24] 
was implemented, which guarantees diagonal dominance of the coefficients in the 
inversion matrix at all times for constant density flows. 

Additionai checks and validations of REBUFFS were performed and are repor- 
ted in [46]. In particular, steady state calculations of the wall-driven enclosure flow 
at R = 3200 on 30 x 30 and 52 x 52 non-uniform grids showed very good agreement 
with the superrefmed grid calculations of [lo]. 
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5. RESULTS AND DISCUSSION 

In this section we first present and discuss calculations of the wall-driven 
enclosure flow using the REBUFFS code. The initial flow development was predic- 
ted for R = 2000 and 5000, respectively. These results provide the basis for a com- 
parison with the random-vortex calculations performed for R = 2000, 5000, 
and 10.000. However, the comparison must be made cautiously, since the finite dif- 
ference equations solved by REBUFFS yield results that are smoothed out in time 
and space by the discretization scheme and the finite grid. Therefore, perturbations 
tend to be damped out. By contrast, a vortex method solution provides a more 
realistic picture of the flow, in that it yields a sequence of possible instantaneous 
realizations as a function of time (subject to constraints related to the finite number 
of vortex elements, their finite dimensions, and the finite calculation time step). 

To make a meaningful comparison between the two procedures at any time, c, 
the mean flow characteristics derived from an ensemble of vortex method solutions 
should be obtained. Because a large ensemble is prohibitively expensive to generate, 
we are limited to averages of three independent solutions with identical flow con- 
ditions excepting the initial seed of random number generation (say initial seed 
1= 5, 10, 15) to obtain a smoothed solution at time f. Clearly, particularly during 
the early stages of flow development, such a procedure is bound to be coarse. 
Nevertheless, it has been dictated by practical considerations. Although limited, 
the availability of experimental data [l] at R = 2000 broadens the basis for a 
comparative evaluation. 

Space limitations make it necessary to focus on the principal findings of this 
study. For this we have chosen representative samples of the large volume of 
numerical data available. The reader is referred to Choi [46] for a complete record 
of the calculations. 

5.1. REBUFFS Calculations 

These calculations were performed on a non-uniform (30 x 30) grid after it had 
been determined that further refinement affected the results only marginally. A time 
step of At = 0.2 was used for both values of the Reynolds number (R = 2000 and 
5000). 

The calculation for R= 2000 was conducted to steady state. The developed 
solution of the flow is shown in Fig. 4, where the length of a vector is proportional 
to the speed of the fluid at the base of the vector, and the arrow indicates the local 
direction of the flow. The principal characteristics of the developed flow solution 
are the presence of: one large clockwise-rotating eddy in the center of the enclosure; 
one counterclockwise rotating secondary eddy in each of three of the enclosure cor- 
ners; and, one clockwise-rotating tertiary eddy in the bottom right-hand corner of 
the enclosure. (The tertiary eddy is hard to see in the figure, but is defined by the 
four vectors most closely located to this corner. j This solution, including the predic- 
tion of the tertiary eddy, is in good agreement with the results given in [lo]. 
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FIG. 4. Velocity vector plot showing REBUFFS calculations of developed, steady state. wall-thriven 

enclosure flow at R = 2000. 

As the enclosure flow develops (a detailed sequence of vector plots is given 
in [46]) the center of rotation of the main eddy is displaced from the top right- 
hand corner of the enclosure towards its center. The first of the secondary eddies 
appears in the bottom right-hand corner of the enclosure at t = 4 and is essentially 
developed by r = 13. The second secondary eddy appears in the bottom left-hand 
side of the enclosure at t I 6, and between f = 6 and 13 it grows very little. 
However, by the time steady state is achieved its size has increased considerabiy. 
The times of the appearance of the third secondary eddy (in the top left-hand 
corner of the enclosure) and the tertiary eddy were not determined. 

The initial developments of the flows at R= 2000 and 5000 are very similar. 
However, at R = 5000 an interesting detail appears more clearly. This is shown in 
the sequence of plots in Fig. 5. At t = 2 a secondary eddy appears along the side 
wall of the enclosure beneath the main eddy generated by the moving wall. Its coor- 
dinates are x = 0.99 and y = 0.69 approximately. As time increases this secondary 
eddy is displaced vertically downwards. However, its vorticity is diffused before it 
has a chance to reach the bottom right-hand corner of the enclosure. Therefore, it 
does not appear to be the cause for the secondary eddy that appears subsequentiy 
at this location. Using flow visualization, Sinha [47] has observed the presence of 
the above secondary side-wall eddy during the very initial stages of flow develop- 
ment in his enclosure. More will be said about this interesting structure in relation 
to the random-vortex calculations. 
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FIG. 5. Velocity vector plots showing REBUFFS calculations of developing wall-driven enclosure 
flow at R = 5000; I = 1, 2, and 3 in Figs. a, b, and c, respectively. 
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5.2. Rundom- Vortex Calculatiorw 

The random-vortex method was used to predict the wall-driven enclosure flow at 
R = 2000, 5000, and 10.000. In all cases the start-up flow displayed evolving vertical 
structures along the moving wall of the enclosure. As the flow evolved these 
structures were convected towards the downstream corner of the moving wail, 
where the main recirculating flow in the enclosure evolves. In all major respects the 
characteristics of the flows at R = 2000 and 5000 were the same; see [46], 

Figures 6 and 7 show instantaneous vortex element velocity vectors and 
streamline contour plots of the flow at R = 2000 for t = 2 and 3, respectively. The 
appearance of the secondary eddy below the main recirculation zone is quite strik- 
ing at t = 3. The streamline plots show the extent to which the main recirculating 
flow evolves in the enclosure. Between t = 2 and 3, the center of the main eddy has 
been significantly displaced toward the enclosure center. 

Figure 8 is a velocity vector plot of the flow, derived from the vorticity field, for 
R = 10.000 at t = 2: The most striking feature in the plot is the ejection of the small 
secondary eddy from the vertical sidewall toward the enclosure center by the main 
corner eddy. Such an ejection did not appear in the lower Reynolds number 
calculations of the flow. 

The repetition of random-vortex calculations using different initial seed values 
allowed the determination of mean velocity profiles from samples of 3 calculations. 
The results for R = 2000 are shown in Fig. 9a and 10a for different locations in the 
enclosure. Corresponding results calculated with the REBUFFS code are shown in 
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FIG. 6. (a) Instantaneous vortex element positions and velocities at those positions: R = 2000, t = 2; 
(b) streamline contours plot corresponding to Fig. 6a. 
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FIG. 7. (a) Instantaneous vortex element positions and velocities at those positions: R = ?Q@Q : = 3: 

(5) streamline contours plot corresponding to Fig. 7a. 
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FIG. 8. Velocity vector plot derived from random vortex method calculations: R = 10.000, t = 2.0. 

Figs. 9b and lob. The agreement between the two sets of results is fairly good. 
Similar agreement was obtained for the calculations at R = 5000; see [46]. 

Calculated locations of the main recirculating flow center are shown in Fig. 11, as 
a function of time, for the three Reynolds numbers investigated. For R = 10.000 
only vortex method results are available. For R = 5000 agreement is good between 
the vortex method calculations and results obtained using the REBUFFS code. For 
R = 2000, the random-vortex scheme results are in slightly better agreement with 
the measurements than the REBUFFS calculations. 

6. CONCLUSIONS 

The initial unsteady wall-driven flow in a 2D rectangular enclosure at high 
Reynolds number was simulated using the random-vortex scheme. Vortex sheets 
were employed in boundary layer regions near walls, while blobs were used in the 
core of the flow and in corners. A closed form solution in terms of elliptic functions 
was used as the basis to compute the velocity field induced by the vortex blobs in 
the enclosure. A special treatment of flow regions near the enclosure corners, where 
the use of sheet-elements is inappropriate, was necessary. This has consisted in 
defining a short transition region between each corner (where only blobs are used) 
and the two boundary layers at right angles adjacent to it (where only sheets are 
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FIG. 9. (a) Random vortex method calculations of the average velocity profiles at the symmetry 
planes for R = X100: (b) REBUFFS code calculations of the velocity profiles at the symmetry planes ior 
R = 2000. 
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FIG. 10. (a) Random vortex method calculations of the average velocity profiles at two planes near 
the main vortex center for R=2000; (b) REBUFFS code calculations of the velocity profiles at two 
planes near the main vortex center for R = 2000. 
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FIG. Il. Relative comparison of calculated main vortex core location; points for R = 2000 and 5000 
arc plotted at values dr = 1.0 apart. Points for R = 5000 are ifr = 0.5 apart. The experimental vaiues at 
t = 3 were obtained by interpolating data at t = 2 and 4 in [I]. 

used), in which the effect of a vortex element on a blob is as if it were another blob, 
while its effect on a sheet is as if it were another sheet. 

The calculations accurately reveal the growth of the main vortex that originates 
in the corner downstream of the sliding wall, as well as the presence of transient 
secondary flow structures that are due to the convection and diffusion of vortkcity 
from this region of the flow. The distribution and intensities of the secondary struc- 
tures depend strongly on Reynolds number. How they ultimately evolve with time 
is a matter for further research. 

Comparisons between the random-vortex calculations and the limited experimen- 
tal data available show good agreement. Good qualitative agreement is also 
obtained with respect to calculations obtained using a transient finite difference 
procedure. 
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